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ABSTRACT. We present an overview of some aspects of the mathematical theory of
wavelets. These notes are addressed to an audience of mathematicians familiar with
only the most basic elements of Fourier Analysis. The material discussed is quite
broad and covers several topics involving wavelets. Though most of the larger and
more involved proofs are not included, complete references to them are provided. We
do, however, present complete proofs for results that are new (in particular, this applies
to a recently obtained characterization of “all” wavelets in section 4).

1. Introduction

A wavelet is a function  in L2 (R) such that the system

(1.1)  jk (x) � 2j=2  (2jx� k)

j, k �Z, is an orthonormal basis for L2 (R). Observe that if �k is the translation operator
mapping  into (�k  )(x) =  (x � k), k � Z, and Dj is the dilation operator defined by
(Dj  )(x) = 2j=2  (2jx), then the system f jkg is obtained by first applying the translation
�k to  and, secondly, the dilation Dj to the function �k . As we shall see later on, it is
important to respect this order of applying these operators: the translation operator is applied
before the dilation operator.

Two examples of wavelets were known for a long time: the Haar wavelet and the Shannon
wavelet. The former is the function

(1.2)  (x) =

8<: 1; if 0 6 x < 1=2
�1; if 1=2 6 x < 1
0; elsewhere .
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The latter is the function  whose Fourier transform is

(1.3) b (�) =

�
1; if � � (�1;�1=2] [ [1=2; 1)
0; elsewhere .

The Fourier transform we shall use is given by the equality

(1.4) f̂ (�) =

Z
1

�1

f(x)e�2� i � x dx

whenever f � L1(R). We assume that the reader is acquainted with the basic L2� the-
ory of the Fourier transform. In particular, (�k f)^(�) = e�2� ik � f̂(�) and (Djf)^ (�) =

2�j=2 f̂ (2�j �). Thus, translations by k are converted by the Fourier transform into modu-
lations by �k (multiplication by e�2� ik �); the dilations Dj become the dilations D�j after
taking the Fourier transform. The Plancherel theorem, the fact that f2jSg; j �Z, is a partition
of R � f0g when S = (�1;�1=2] [ [1=2; 1), and the completeness of the system fe2� ik �g,
k �Z, in L2(S), immediately imply that the Shannon function  in (1.3) is a wavelet. That
the Haar function defined in (1.2) is a wavelet has been well known since it was introduced
in 1910 [Ha]. In any case, this is an easy application of the characterizations of wavelets we
shall present.

In the early eighties many different constructions of wavelets were discovered. This in-
cluded several other similar methods of reproducing functions. For example, pairs of systems
f�jkg and f jkg; j; k �Z, were introduced so that for any f� L2(R) we have the reproducing
formula

(1.5) f =
X
j;k �Z

hf; �jki jk

for all f � L2(R).
We will present a careful accounting of who produced the results we describe throughout

the text as well as in an appendix at the end of this exposition. Soon after the “new wavelets”
were introduced it became apparent that they had important applications in various different
areas. This attracted many investigators whose principal interest was in these applications.
Perhaps this detracted attention from the mathematical theory that is associated with wavelets
and similar concepts. Our purpose is to present some of this theory. It is our belief that it is a
beautiful subject connected to many areas of mathematics.

It is clear from the little that has been presented so far that the Fourier transform must
play an important role in the study of bases and similar systems that are constructed by
applying translations, dilations and modulations to a specific function. Let us illustrate this by
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presenting a characterization of those  �L2(R) such that f j;kg; j; k �Z, is an orthonormal
system:

PROPOSITION I. Suppose  �L2(R). Then f (:� k) : k �Zg is an orthonormal system
if and only if

(A)
X
k �Z

j b (� + k) j 2 = 1 for a.e. � �R:

The proof of this fact is very simple. The orthonormality condition is h (: � j);  (: �
l) i = Æjl, which, by the Plancherel theorem, is equivalent to

Æjl =

Z
R

b (�) b (�) e�2�i (j�l) � d �:

We can then “periodize” this integral so that it takes the formZ 1

0

X
k �Z

j b (� + k) j 2 e�2�i (j�l)� d �

and we see that the orthonormality condition is equivalent to the statement that the 1-periodic
function

P
k �Z j b (� + k) j2, which clearly belongs to L2 ([0; 1)), has Fourier coefficients 0

corresponding to all non-zero frequencies and the zero-coefficient is 1. But this is equality
(A).

PROPOSITION II. The systems f j1; kg and f j2;kg; k �Z, are orthogonal to each other
whenever j1 6= j2 if and only if

(B)
X
k �Z

b (� + k) b (2j(� + k)) = 0 for a.e. � �R whenever j > 1:

By a change of variable the orthogonality condition can be reduced to the case j1 = 0 and
j2 > 1. A periodization argument, just like the one we just described then gives us equality
(B).

Thus, we see that the characterization of all wavelets is reduced to finding a condition
that implies the completeness of the system f jkg; j; k �Z. It turns out that, again, a simple
equality, involving the Fourier transform of  , provides us with such a characterization of
completeness:

PROPOSITION III. (The characterization of all wavelets in L2(R)). A function  �L2(R)
is a wavelet if and only if the system f jkg is orthonormal and
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(C)
X
j�Z

j b (2j �) j 2 = 1 for a.e � �R:

Unlike Proposition I, this result is not immediate. It is also quite new. We shall discuss
its proof in the sequel. For the moment, let us make some observations.

The characterization of orthonormality involved averaging (summing) over the group of
integral translations. Since the group of dyadic dilations also plays a basic role in the defini-
tion of a wavelet it is natural to expect that averaging over this last group plays a part in this
characterization. In fact, this is precisely what is the case in equality (C). What is surpris-
ing, however, is that there is a characterization of all wavelets that involves only sums over
dilations:

PROPOSITION IV. (Another characterization of all wavelets) Suppose  �L2(R), then 
is a wavelet if and only if jj jj2 > 1; equality (C) is satisfied, and

(D) tq (�) =
X
j>0

b (2j �) b (2j(� + q)) = 0 for a.e. � �R;

whenever q is an odd integer.

Let us explain the role played by the hypothesis jj jj2 > 1. Let H be a separable Hilbert
space and E = fe� : � �Ag a countable collection of vectors in H (A can be N or f(j; k) :
j; k�Zg) such that jjujj2 =

P
� �A j(u; e�)j2 for each u �H . Such a collection E is then called

a tight frame (of constant 1) for H. If jje�jj > 1 for all � �A then, letting u = e�0 , we have

jje�0 jj2 =
X
� �A

j(e�0 ; e�)j2 = jje�0 jj4 +
X
�6=�0

j(e�0 ; e�)j2:

Hence,

jje�0jj2 (1� jje�0 jj2) =
X
� 6=�0

j(e�0 ; e�)j2:

Because of our assumption that jje�0jj > 1, the left side of this equality cannot be
strictly bigger than 0, while the right side cannot be negative. It follows that jje�0 jj = 1
and (e�0 ; e�) = 0 for all �0 and � 6= �0. That is, E is an orthonormal basis (see pages 336-7
of [HW] for a more complete account of these matters).

The two equalities (C) and (D) characterize those  �L2 (R) for which the system f jkg,
j; k in Z, is a tight frame of constant 1 for L2(R). The condition jj jj2 > 1 assures us that
this system is an orthonormal basis; that is, that  is a wavelet.

The four equations (A), (B), (C) and (D) not only provide us with a rather simple charac-
terization of all wavelets, but they are most useful for constructing large classes of wavelets.
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For example, it follows immediately from (A) or (C) that if  is a wavelet then j b (�)j 6 1

a.e. Since jj jj2 = jjb jj2 = 1 this means that f� : b (�) 6= 0g must have measure at least 1.
The Shannon wavelet is an example for which this set has measure precisely 1. It is natural
to consider the class of all wavelets  such that W = W = f� : b (�) 6= 0g has measure
1. For such  we clearly must have j b j = �W . It is natural to call the class of such wavelets
the collection of Minimally Supported Frequency (MSF) wavelets. It is an easy exercise to
show that the MSF wavelets are characterized as the class of all  �L2 (R) such that j b (�)j
assumes only the values 0 or 1 a.e. and equations (A) and (C) are satisfied. The sets W = W 

on which the Fourier transform of MSF wavelets is not zero are called wavelet sets. (A) and
(C) are equivalent to the statement:

THEOREM (1.1). W is a wavelet set if and only if each of the collections fW� kg; k in
Z, and f2jWg; j in Z is a partition of R.

In the course of this exposition the reader will find many examples of wavelets constructed
by the use of these 4 equations and in the appendix we will give a still larger class of wavelets
obtained by these means.

We shall also consider the subject of wavelets  �L2(Rn). Not only will we show many
of the various properties they enjoy, but we will generalize the concept by showing how other
dilations and translations can be used for obtaining orthonormal bases or tight frames from a
particular function (or a collection of functions); moreover, we will extend all these matters
to higher dimensions. In order to do this most efficiently it is useful to discuss “continu-
ous wavelets” associated with Rn . For many considerations the theory of these wavelets is
simpler.

2. Continuous Wavelets in One and More Dimensions

Let G be the affine group associated with R consisting of all

(a; b) �R � R; a 6= 0; with the group operation

(c; d) Æ (a; b) = (ac; b+
d

a
):

This operation is consistent with the action of g = (a; b) �G onx in R given by g(x) =
a(x+ b). Observe that g�1 = (a; b)�1 = (a�1;�ab). For  �L2(R) let

(2.1) (Tg  )(x) =
1p
jaj

 (
x

a
� b) =

1p
jaj

 (g�1(x)) �  a;b(x):

Then g �! Tg is a unitary representation of G acting on L2 (R).
The mapping W taking f � L2 (R) into the function
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(W f)(g) =

Z
R

f(x) (Tg  )(x) dx = hf;  a;bi

on G is the (continuous) wavelet transform of f. A goal in wavelet theory is to find a condition
on  that allows us to reconstruct f from its wavelet transform via the reproduction formula

(2.2) f(x) =

Z
G

hf;  gi g (x)d� (g) =

Z
G

(W f)(g)Tg  (x) d� (g);

where � is (left) Haar measure on G (d�(a; b) = dadb
jaj

). One can consider (1.5) as a discrete
version of this reproduction formula when ' =  .

This condition, the admissibility condition for  , was discovered by Calderón in 1964 [C]
and can be expressed in the form

(2.3) 1 =

Z
R�f0g

jb (a �)j2 dajaj
for a.e. �. We will show the equivalence of (2.2) and (2.3) in a considerably more general
context.

It is clear that (2.3) is the “continuous” analog of equality (C). In fact it is much more
than an analog. Suppose that  �L2 (R) satisfies (C), then

log 2 =

Z 2

1

da

a
=

Z 2

1

X
j �Z

j b (2ja)j2 da
a

=
X
j �Z

Z 2j+1

2j
j b (a)j2 da

a

=

Z
1

0

jb (a)j2 da
a

=

Z
1

0

jb (a �)j2 da
a
:

for � > 0. Thus, it follows that, after a renormalization,  satisfies (2.3).
This shows, essentially, that each wavelet is also a continuous wavelet. On the other

hand, it is clear that the converse is not true; being a wavelet is more restrictive than being a
continuous wavelet.

Let us also observe that, in the continuous case, the order of the operation of translation
(by�b) followed by dilation (by 1

a
), as performed in the definition of  a;b, can be reversed

and we would, again, have that the same admissibility condition (2.3) is equivalent to the
reproducing formula (2.2). More precisely, ifG is endowed with the operation (a; b) �(c; d) =
(ac; ad+ b) (that corresponds to the action x �! ax + b on R) and

(Sg  )(x) =
1p
jaj

 (g�1x) =
1p
jaj

 (
x� b

a
) � e a;b (x);
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we have

(2.4)
Z
G

hf;  a;bi a;b (x)
dadb

jaj =

Z
eG

hf; e a;bi e a;b (x) dadb
a2

for all f � L2(R) ( eG is the “new” version of the affine group with this last multiplication, so
that its left Haar measure is dadb

a2
).

Let us now pass to the extensions of these notions and results to n dimensions. The Full
Affine Group of Motions on Rn ; G#, consists of all pairs (a; b) �GL(n;R) � R

n (endowed
with the product topology) together with the operation

(�; �) � (a; b) = (�a; b+ a�1 �):

This operation is associated with the action x �! a(x + b) on Rn . The subgroup

N = f(a; b) �G# : a = I; b �Rng
is clearly a normal subgroup of G#.

We consider a class of subgroups, fGg, of G# of the form

G = f(a; b) �G# : a �D; b �Rng;
whereD is a closed subgroup ofGL(n;R): We can identifyD with the subgroup f(a; b) �G :
a �D; b = 0g) of G. We refer to D as the dilation subgroup and N will be called the
translation subgroup ofG.

If � is left Haar measure for D, then d�(a; b) = d�(a)db is the element of left Haar
measure for G.

Let T be the unitary representation of G acting on L2 (Rn) defined by

(2.5) (T(a;b)  )(x) = j det aj�1=2  (a�1x� b) �  a;b(x)

for (a; b) �G and  �L2 (Rn). Observe that (a; b)�1 = (a�1;�ab). We then have

(2.6) (T(a;b)  )
^(�) = j det aj 12 b (a� �)e�2� i � �ab

where a� is the transpose of a.
The wavelet transform W associated with  is now defined by

(W f)(a; b) = hf;  a;bi =

Z
Rn

f(y) (a�1y � b)
dyp
j det aj

whenever f � L2(Rn) and (a; b) �G. Our first goal is to find an admissibility condition for  
that guarantees the general version of the Calderón reproducing formula
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(2.7) f(x) =

Z
G

hf;  a;bi a;b (x)d � (a; b)

for all f � L2 (Rn). The analog of (2.4), involving the operation (�; �)Æ(a; b) = (�a; �b+�),
is valid in this general case; hence, the same admissibility condition applies to both “versions”
of G. This condition is

THEOREM (2.1). Equality(2.7) is valid for all f�L2(Rn) if and only if for a.e. � 6= 0

(2.8) � (�) =

Z
D

jb (a� �) j2 d � (a) = 1:

(compare with (2.3)).
The following argument also provides a (weak) meaning for (2.7).
W obviously maps L2(Rn) into L1(G): We claim that, if (2.8) is satisfied, then W is

an isometry from L2(Rn) into L2(G; �) :

jjW f jj2L2 (G; �) =
Z
D

Z
Rn

jhf;  a;bij2dbd� (a) =Z
D

Z
Rn

j
Z
Rn

bf (�) b (a� �)ei 2� ��abd �j2 j det aj dbd� (a)
=

Z
D

[

Z
Rn

jf bf b (a��)g_(ab)j2 j det ajdb]d� (a)
=

Z
D

[

Z
Rn

jf bf b (a��)g_(b)j2 db] d� (a)
=

Z
D

Z
Rn

j bf (�)j2 jb (a� �)j2 d � d � (a) = Z
Rn

j bf (�)j2� (�) d �

= jj bf jj22 = jjf jj22:
By polarization, therefore, we have

(2.9) hW f;W hiL2(G) = hf; hiL2(Rn)
for all f and g � L2(Rn): In particular, the adjoint,W �

 , of W is a left inverse of W :
W �

 W = I . We also have shown that the reproducing formula is valid in the weak sense.
We refer the reader to [S] for more general versions of this reproducing formula.

Suppose, on the other hand,W satisfies (2.9) (so that (2.7) is valid in the weak sense) and
�0 is a point of differentiability for the integral of � . Let j bf (�)j2 = jBr(�0)j�1XBr(�0) (�),
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where Br (�0) is the ball of radius r > 0 centered at �0. Reversing the equality chain used to
obtain (2.9) we see that

1

jBr (�0)j

Z
Br (�0)

� (�) d � = 1

for all r > 0. Letting r �! 0 we obtain � (�0) = 1. Since a.e. � �Rn is such a point of
differentiability, the admissibility condition (2.8) is true and the theorem is established.

It is natural to ask: for what dilation groups D does there exist a  �L2(Rn) satisfying
the admissibility condition (2.8)? We shall call such groups admissible. When n = 1 and D
is the group of non-zero numbers (or positive numbers) with multiplication being the group
operation, it is clear that the admissibility condition is verified by any  such that b is a
bounded function supported in a compact set in R � f0g (appropriately scaled). Thus, there
exists  �L2(Rn) satisfying the admissibility condition . For the same reason, in Rn , the
group D = faI : a �R � f0gg is also admissible. The group SO(2), acting on R2 , however,
is not admissible. For if this group were admissible, then there exists  �L2(R2) such that

1 =

Z 2�

0

jb (ei � � ei ')j2 d � =
Z 2�

0

jb (� ei �)j2 d �:

Thus, Z
1

0

� d� =

Z
1

0

�

Z 2�

0

jb (� ei �)j2 d � d � = jjb jj2L2(R2) <1
which is clearly impossible.

However, the 1-parameter groups

(2.10) D =

�
a = etL : t �R; L =

�
1 �1
1 1

��
and

(2.11) D =

��
x y
0 1

�
: x 6= 0; x; y �R

�
are admissible.

The following (almost) characterization of the admissible groups D can be applied to see
the validity of our claim about the last two examples.

THEOREM (2.2). Let D be a closed subgroup of DL(n;R) and consider the right action
� �! a� � of G on Rn for � �Rn . Let

D�
� = fa �D : jja� � � �jj 6 �g

be the �-stabilizer of �, for � > 0, and let D� = D0
� be the stabilizer of �. If either
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i. j det aj = �(a) for all a �D, or
ii. f� 2 R

n : D� is noncompactg has positive Lebesgue measure

holds, then D is not admissible. If both i and

iii. f��Rn : D�
� is non-compact for all � > 0g has positive Lebesgue measure

fail, then D is admissible.

(� is the modular function of D : the Radon-Nikodym derivative d �l=d �r, where �l is left
Haar measure and �r is right Haar measure on D, normalized so that �(I) = 1, where I is
the identity element ofD.) The proof is by no means immediate and will appear in [LWWW].

When D is given by (2.11) and � = (�1; �2) with �1 6= 0 we have

D�
� =

��
x y
0 1

�
: (x� 1)2 + y2 6 �2=�21

�
;

This is compact for any positive �, so condition 2 fails. Furthermore, for a =

�
x y
0 1

�
,

d �l (a) = dxdy=x2 and d �r (a) = dxdy= jxj so �(a) = d �l(a)=d �r (a) = 1= j det aj and
so condition i is also invalid. Hence D is admissible. When D is a general 1-parameter
subgroup of GL(n;R) (i.e., D = fetL : t �Rg for some n � n matrix L), D is unimodular
and det (etL) = et tr(L) so i holds , tr(L) = 0. In this case D is not admissible. When
tr(L) 6= 0, i fails and it is easy to check that 2 also fails, so D is admissible.

A homogeneous Galilei group is a subgroup D of GL(n + 1; R) which is of the form
(2.11) with y replaced by an n�1 column vector (i.e., a member of Rn ) and x replaced by an
invertible n � n matrix satisfying various stipulations; e.g., x is an orthogonal matrix or the
product of an orthogonal matrix and a non-zero scalar. The subgroupG of the affine group on
R
n+1 whose dilation group is D and whose translation group includes all Rn+1 translations

is then an inhomogeneous Galilei group.
Using Theorem (2.2), it follows easily that D is not admissible if we allow x to be or-

thogonal while D is admissible if we allow x to be the product of an orthogonal matrix and a
non-zero scalar. In the second case, the family fTg  : g �Gg determined by any continuous
wavelet  and the reproducing formula associated with this family provide examples of what
are known in physics as coherent states. The admissibility conditions for certain classes of
these groups have been obtained by several authors. In general these derivations are rather
complicated (see [Co]); theorem (2.2) does provide a simpler and more unified method for
solving these problems.

As an introduction to the notion of “discretizing” continuous wavelets let us observe that
the proof of Theorem (2.1) in the special case n = 1 and D the group f2j : j �Zg shows that
(C) in Proposition III is equivalent to the reproducing formula
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(2.12) f =
X
j �Z

Z
R

hf;  jti jt dt;

where  jt(x) � 2j=2  (2jx � t) for j �Z and t �R. That is, (2.12) is a “discretization” of

(2.2) with the sum
X
j �Z

replacing the integral
Z
R

�dajaj . The replacement of the integral over R

in (2.12) by the sum
X
k �Z

hf;  jk i jk gives us the orthonormal wavelet expansion of f if  is

such a wavelet. It turns out that there are other discretizations of (2.12). For example, if n is
an odd integer and  is an o.n. wavelet, then

f =
X
j �Z

X
k �Z

1

n
hf;  j k

n
i j k

n

with convergence in L2(R) (see [CS]). This is an example of a phenomenon known as over-
sampling. Letting n tend to 1 we obtain (at least formally) the equality (2.12) which can
be thought of as “the ultimate oversampling property” of a  satisfying (C). There are sev-
eral examples of discretizations of the continuous wavelet properties. In order to appreciate
the complexity of “discrete” over “continuous” wavelets we now present generalizations to
non-dyadic wavelets, wavelet systems, and related families in n-dimensions.

Let � = PZn be a lattice in Rn (P any invertible n� n matrix) and A an n� n dilation
matrix (each eigenvalue � of A satisfies j�j > 1) for which A� � �. For  �L2(Rn) let
E = f j;
 : j �Z; 
 ��g, where

(2.13)  j;
(x) = j detAjj=2  (Ajx� 
):

E is the affine system generated by  , the lattice �, and the dilation matrix A.  is a wavelet
relative to � and A if and only if E is an orthonormal basis of L2(Rn). We shall also use
the further notations: �� = f
0 �Rn : h
0; 
i �Z for all 
 ��g and B = A�, the transpose of
A. Then B �� � ��. Let S be the set difference �� n B ��. We then have the following
generalizations of Proposition III and Proposition IV.

PROPOSITION III0.  is a wavelet relative to � and A if and only if its affine system E is
an orthonormal set in L2(Rn) and

(C 0)
X
j �Z

j b (Bj �)j2 = j det P j for a.e. � �Rn :

PROPOSITION IV0. The affine system E generated by  is a tight frame of constant 1 if
and only if equality (C 0) is satisfied and, for each s �S,
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(D0)
X
j>0

b (Bj �) b (Bj(� + s)) = 0 for a.e. � �Rn :

 is a wavelet if and only if (C 0) and (D0) are satisfied with jj jj2 > 1.

Now suppose A is of the form eL for some n � n real matrix L; this is a very mild extra
condition on A, e.g., it is automatically satisfied if A has no negative eigenvalues. Write A t

for etL and Bt for (At)� = etL
�

. Then D = fAt : t �Rg is a one parameter subgroup of
GL(n;R) with Haar measure d � (At) = dt. If  is a wavelet relative to � = Z

n and A, then
equation (C 0) implies Z

D

jb ((At)� �)j2 d � (At) =
Z

1

�1

j b (Bt �)j2 dt

=

Z 1

0

X
j �Z

jb (Bt(Bj �))j2 dt = 1

for a.e. � �Rn . So  is a continuous wavelet relative to D. It is easy to construct examples
where A belongs to larger subgroups (non 1-parameter) (D0) and  remains a continuous
wavelet relative to (D0). In view of Proposition IV0, we again conclude that it is relatively easy
for a function  �L2(Rn) to be a continuous wavelet but that far more structure is required
for  to be a discrete wavelet. We are also led to pose the question of determining, for a given
admissible group D � GL(n;R), which discrete subgroups of D and which Rn lattices give
rise to discrete systems analogous to E which are either orthonormal bases or tight frames for
L2(Rn).

Another observation is in order. In many situations it is appropriate to generate a wavelet
basis with more than one funtion  . In the fourth section, for example, we shall see that
L = 2n � 1 functions  1; : : : ;  L are needed to obtain MRA wavelets in n-dimensions. This
is reflected in what follows.

With � and A as above and with L an integer > 1, we can associate with each family
	 = f 1;  2; : : : ;  Lg � L2(Rn) an affine system E	 = f lj 
 : j �Z; 
 ��; 1 6 l 6 Lg
where  lj 
 is defined for  l by (2.13). In addition, 	 generates a quasi-affine system e�	 =

fe lj 
 : j �Z; 
 ��; 1 6 l 6 Lg where

e lj 
 (x) = �  lj 
 (x) if j > 0
j detAjj  l (Aj(x� 
)) if j < 0

�
Recall that an arbitrary collection fe� : � �Ag in L2(Rn) is a Bessel family if there is a
constant C > 0 such that
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X
� �A

jhf; e�ij2 6 C jjf jj2 for all f � L2(Rn):

Suppose 	 = f 1; : : : ;  Lg and � = f'1; '2; : : : ; 'Lg are two families in L2(Rn) for which
the affine systems E	 and E� are Bessel families. Then � is an affine dual of 	 if E� is dual
to E	 in the sense that for all f; g � L2(Rn),

(2.14) hf; gi =
LX
l=1

X
j �Z

X

 ��

hf;  lj 
i h'lj 
 ; gi:

� is a quasi-affine dual of � if (2.14) holds when  lj 
 and 'lj 
 are replaced by e lj 
 and e'lj 
 .

THEOREM (2.3). Using the above notation, suppose E	 and E� are Bessel families. Then
� is an affine dual of 	 if and only if

(2.15)
LX
l=1

X
j�Z

b l (Bj �) b'l (Bj �) = jdetP j

for a.e. � �Rn and, for each s �S = �� nB ��;

(2.16) ts(�) =
LX
l=1

X
j>0

b l (Bj �) b'l (Bj(� + s)) = 0

for a.e. � �RN .
Moreover, these two equations also characterize the relation that � is a quasi-affine dual of
	.

Note that (2.15) and (2.16) reduce to (C 0) and (D0) when L = 1 and '1 =  =  1.
	 = f 1; ::;  Lg is a wavelet system (relative to � and A) if E	 is an orthonormal basis of
L2(Rn); in particular, (2.15) and (2.16) must hold with 'i =  i for 1 6 i 6 L.

The generalization to wavelet systems and the reversal of the order of dilation and trans-
lation in passing from affine systems to quasi-affine systems raise further questions, and there
is reason to hope this may be elucidated by the less technically formidable investigation of
continuous wavelets for subgroups of GL(n;R). This is an area of active research which we
shall not comment upon further in these notes. Instead, we turn to the techniques needed to
prove the new characterization of dyadic wavelets announced in Proposition III in the first
section and the generalized Proposition III0.
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3. Shift Invariant Subspaces and a New Characterization of Wavelets

Proposition III was stated as a conjecture by the first author in a seminar. Two students, M.
Bownik and Z. Rzeszotnik, proved it independently. We present the n-dimensional extension
of an argument in the Ph.D. thesis of the latter [R]; for a different approach see [B2].

Suppose ' is a non-zero function in L2(Rn). Let A' denote the algebraic span of the
translates ' (� � k) = �k ' where k �Zn. That is, A' is the linear space of all finite linear
combinations of the translates �k '. Let

(3.1) !' (�) =
X
l �Zn

jb' (� + l)j2:

It is clear that !' is a 1-periodic function that is integrable on Tn = f� = (�1; �2; :::; �n) :
0 6 �j < 1; j = 1; 2; :::; ng (by “1-periodic” we mean that it is 1-periodic in each variable).

Moreover, if f =
X
finite

ak�k ' is the general element of A', then

bf(�) = (X
finite

ake
�2� ik��

) b' (�) = t(�)b' (�):
Conversely, if bf (�) = t(�) b'(�), with t a trigonometric polynomial, then f �A'. Thus, for
such an f we have

jjf jj22 = jj bf jj22 = Z
Rn

jt(�)j2 jb'(�)j2 d � = X
k �Zn

Z
�k Tn

jt(�)j2 jb' (�)j2 d � =
X
k �Zn

Z
Tn

jt(� + k)j2 jb'(� + k)j2 d � =
Z
Tn

jt(�)j2 !' (�)d �:

This shows that the mapping eU' that assigns to f �A' the unique trigonometric polynomial t
such that bf = tb' is an isometry between A' and the space P' of all trigonometric polynomi-
als endowed with the norm

jjtjjL2(Tn;!') =
�Z

Tn

jt(�)j2 !' (�) d �
�1=2

:

Thus, eU' has a unique extension to an isometry U' between V', the closure ofA' in L2(Rn),
and the space L2(Tn; !') consisting of all 1-periodic functions s satisfying jjsjjL2(Tn;!') <
1. Observe that, as functions on Tn (or Rn and 1-periodic), two elements that are equal on

' = f� : !'(�) 6= 0g represent the same element of L2(Tn; !').

When f � V', then U'f = s with s � L2(Tn; !') and
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(3.2) jjf jj2 = jjsjjL2(T;!');

where bf = s b'. Conversely, any s �L2(Tn; !') gives rise to an f � V' via the last equality.
The translates of '; �k '; k �Zn generate V' in the manner just described. In view of

the notions we have been discussing, it is natural to ask if V', which is clearly shift invariant,
contains a � which also generates V' and f�k �g; k �Zn, is a tight frame for this subspace? The
answer is “yes” and is easily obtained: Let s(�) = !' (�)

�1=2 for � �
' and, say, s(�) = 0

outside 
'. It is easily seen that b� (�) = s(�)b'(�) gives a function � � L2(Rn) having these
properties: obviously s � L2(Tn; !'); in fact,

jjsjj2L2(Tn;!') =
Z
Tn

X
' (�)d � = j
'j 6 1:

If f � V' so that bf = tb' and b� = s b', then f�kg = f�k �g is a tight frame for V' if and only if

(3.3)
X
k �Zn

jhf; �kij2 = jjf jj22:

But, using Plancherel’s theorem, and “periodizing” the integral over Rn ,

hf; �ki =
Z
Rn

t(�)b'(�)e2� ik��s(�)b'(�)d � =Z
Tn

t(�)s(�)e2� ik��
X
l �Zn

jb'(� + l)j2 d � =
Z
Tn

t(�)s(�)!'(�)e
2� ik�� d �:

Thus, fhf; �kig; k �Zn, is the sequence of Fourier coefficients of the function t(�)s(�)!'(�).
Thus, by this calculation and (3.2),

(3.4)
X
k �Zn

jhf; �kij2 =
Z
Tn

jt(�)j2 js(�)j2 (!'(�))2 d � = jjf jj22:

This proves (3.3)
On the other hand, by (3.2) (with s replaced by t),

jjf jj22 =
Z
Tn

jt(�)j2 !'(�)d�:

From this equality, (3.3) and (3.4) we have

(3.5) 0 =

Z
Tn

jt(�)j2 !'(�)[1� js(�)j2 !' (�)] d �
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for all t � L2(Tn; !'). Choosing t = �E where E is either f��
' : 1 > js(�)j2 !' (�)g or
f� �
' : 1 < js(�)j2 !' (�)g we see that (3.5) is equivalent to

1� js(�)j2 !' (�) = 0

for a.e. � �
'. We have proved

LEMMA (3.6). For each space V'; ' � L2(Rn), we can find � � V' such that

f�(� � k)g; k �Zn;
is a tight frame (of constant 1) for V'. All such � are characterized by having Fourier trans-
forms b�(�) = �(�)!' (�)

�1=2 b' (�), where � is a 1-periodic unimodular function. Moreover,
the tight frame property of these � is characterized by the equality

X
k �Zn

jb�(� + k)j2(3.7)

= X
' (�) a.e.inRn :(3.8)

The elements of V' = V� are precisely those whose Fourier transform is of the form

t(�) b� (�); t� L2(Tn; d �):

Remark. Equality (3.7) is, clearly, a more general version of equality (A) in Proposition I
that characterizes the orthonormality of the system

f (� � k)g; k �Zn:
From this lemma we obtain the following characterization of shift invariant subspaces:

THEOREM (3.1). Suppose V is a closed subspace of L2(Rn). V is shift invariant if and
only if there exists a sequence of functions f�jg; 1 6 j, belonging to V that are mutually
orthogonal such that each �j generates a tight frame (of constant 1), f�j(� � k)g; k �Zn for
the space V�j and

(3.9) V = �1

j=1 V�j
1

Remark. All but a finite number of the �j can be the zero function; in this case V�j = f0g.
Unless V is the trivial space f0g, let us order the �j so that the non-zero ones are listed at the
beginning.

1The symbol�1j=1 denotes the orthogonal direct sum of the sequence of subspaces that follows it.
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Proof. It is clear that if V satisfies (3.9) then it is shift invariant. Thus, we only need to
show that a shift invariant closed subspace V satisifes (3.9). Toward this end we choose a
non-zero ' � V (if such ' exists) and apply Lemma (3.6) to obtain a � � V' satisfying (3.7).
We let �1 = � and consider the orthogonal complement of V�1 in V . Applying the same
argument to V \ V ?

�1 we obtain �2 in this orthogonal complement. Continuing in this fashion
we obtain (3.9) (if we wish to be completely rigorous, we invoke the separability of V and
Zorn’s lemma).

Now suppose V is shift invariant and, thus, equals a direct sum as in (3.9). Fix j > 1 and
� �Rn . Let �j (�) be the vector in l2(Zn) whose kth coordinate is b�j (� + k); k �Zn. Since
f�j(� � k)gk �Zn is a tight frame, equality (3.7) tells us that

(3.10) jj�j(�)jj2l2(Zn) =
X
k �Zn

jb�j(� + k)j2 = X

�j
(�) = 0 or 1

(in order to avoid having to repeatedly add the expression “a.e.” we tacitly assume that we
only choose � in a subset of Rn whose complement has measure 0 and, for all such �, (3.7)
and the other related properties we invoke are valid).

The orthogonality of the spaces V�j , and a periodization argument like the one that gives
us equalities (A) and (B), yields

(3.11) h�j(�);�j 0(�) il2(Zn) = 0

if j 6= j 0.
LetL(�) be the closure in l2(Zn) of the linear space generated by the vectors�j(�); 1 6 j.

It is an immediate consequence of (3.10) and (3.11) that the sequence f�j(�)g; 1 6 j is a tight
frame (of constant 1) for L(�) (even if L(�) = f0g). Let P (�) be the orthogonal projection
of l2(Zn) onto L(�) and e0 � l2(Zn) the vector all of whose coordinates are 0 except for the
coordinate corresponding to 0 �Zn, which has value 1 : e0(k) = 0 if k 6= 0 and e0(0) = 1.
Then, using the tight frame property for f�j(�)g we have

1 > jjP (�)e0jj2l2(Zn) =
X
j>1

jhP (�)e0; �j (�)ij2 =

X
j>1

jhe0; P (�)�j (�)ij2 =
X
j>1

jhe0;�j (�)ij2 =

X
j>1

jb�j(�)j2 � �(�) (= �V (�)):

This shows

LEMMA (3.11). If V is a closed shift invariant subspace of L2(Rn) and we represent V
as the orthogonal direct sum (3.9), then
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(3.12) �V (�) =
X
j>1

jb�j(�)j2 6 1:

The following result will be an essential tool we shall use in the proof of the principal
result of this section. An interesting feature is that the dyadic dilation operator D arises
naturally in this study of the properties associated with the translation operators �k.

LEMMA (3.13). Suppose we have the same hypothesis as in the previous lemma. If
�V � L

1(Rn), then

(3.14) \j �ZDjV = f0g:
Proof. Suppose there exists a non-zero f � \j �Z DjV ; we might as well assume jjf jj2 = 1.
Since

f � \j>0 D�jV

we must have Djf � V for j > 0.
If g � V then, by Lemma (3.6) and equality (3.8),

ĝ(�) =
1X
j=1

mj(�) b�j(�)
(convergence is in L2(Rn), where each mj is a 1-periodic function in L2(Tn \ 
�j ) that is
uniquely determined on 
�j ). Moreover,

(3.15) jjĝjj22 =
1X
j=1

jjmjjj2L2(Tn\

�j
);

(by (3.2) since, in this case, !' = X

�j

). In particular, applying the above equality for ĝ(�)
and (3.15) to g = Dlf; l > 0,

2�nl=2 f̂(2�l �) =

1X
j=1

m
j
l (�)

b�j(�);
where mj

l is 1-periodic, supported in 
�j and

(3.16) 1 = jjDlf jj22 =
1X
j=1

jjmj
l jj2L2(Tn\


�j
) =

1X
j=1

jjmj
l jj2L2(Tn):

Therefore, if l > 0 we have



G. Weiss and E.N. Wilson / The Mathematical Theory of Wavelets 347

(3.17) f̂(�) = 2nl=2
1X
j=1

m
j
l (2

l �) b�j(2l �):
Let Q be the translate of Tn = f� = (�1; �2; : : : ; �n) : 0 6 �j < 1; j = 1; 2; : : : ; ng by
k = (k1; k2; : : : ; kn) �Z

n satisfying k1; k2; : : : ; kn > 1. We claim that f̂(�) = 0 for � �Q. To
see this we first observe that

(3.18)

R
Q

P
1

j=1 jm
j
l (2

l �)j2 d � = 2�nl
R
2lQ

P
1

j=1 jm
j
l (�)j2 d � =

2�nl 2nl
R
Tn

P
1

j=1 jm
j
l (�)j2 d � = 1:

This is a consequence of the fact that 2lQ is the disjoint union of 2nl lattice point translates
of Tn , the 1-periodicity of mj

l , and (3.16). Hence, using (3.17) and (3.18),Z
Q

jf̂(�)j d � 6 2nl=2
1X
j=1

Z
Q

jmj
l (2

l �)j jb�j(2l �)jd � 6
2nl=2

Z
Q

 
1X
j=1

jb�j(2l �)j2!1=2 1X
j=1

jmj
l (2

l �)j2d �
!1=2

d � 6

2nl=2

 
2�nl

Z
2lQ

1X
j=1

jb�j (�)j2d �!1=2  
2�nl

Z
2lQ

1X
j=1

mj
l (�)j2d �

!1=2

6

�Z
2lQ

�V (�)d �

�1=2

� 1:

But the last expression tends to 0 as l �! 1 since �V is integrable and the points � of 2lQ
satisfy 2l

p
n 6 2ljkj 6 j�j. This shows that f(�) = 0 when � = (�1; �2; : : : ; �n) with �j > 1

for j = 1; 2; : : : ; n.
Since Dlf � V for l > 1 we can apply this argument to f̂(2�l �) to obtain the fact that f̂(�)

vanishes in the entire first quadrant. It is also easy to see that this proof, with obvious changes,
shows that f̂ vanishes in the remaining quadrants. Hence, f̂ and f vanish a.e., contradicting
the assumption f 6= 0.

We are now ready to establish the main result of this section:

THEOREM (3.2). Suppose  �L2(Rn) and the system f jkg; j�Z; k�Zn is orthonormal,
then this system is an orthonormal basis for L2(Rn) if and only if  satisfies equality (C).

This means that equalities (A), (B) and (C) in section 1 completely characterize all wave-
lets.
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Proof. For each j �Z let

Wj = spanf jk : k �Zng;
where we assume that the system f jkg; j �Z; k �Zn is orthonormal. As we explained above
(see Proposition III) if  is a wavelet, then  satisfies (C). Thus, all we need to do is to show
that, under our assumptions, if (C) is satisfied then  is a wavelet.

Clearly, Wj ? Wj0 when j 6= j 0. Thus,

L2(Rn) = f�j �ZWjg � f�j �ZWjg?

and we must show that f�j �ZWjg? = f0g. Let

V = f�j>0Wjg?:
Since each Wj; j > 0, is shift invariant, it follows that V is shift invariant. We claim that

(3.19) f�j �ZWjg? � \l �ZDlV:

This follows from the fact that DlV = f�j>lWjg? � f�j �ZWjg?. Thus, it is natural to
see if Lemma (3.13) can be applied in order to conclude that \l �ZDlV = f0g. We have, by
(3.9),

(3.20) V = �1

j=1 V�j ;

where the functions �j satisfy the properties described in Theorem (3.1). We want to show
that �V (�) =

P
1

j=1 jb�j(�)j2 is integrable. In fact, we shall apply (3.9) to

(3.21) L2(Rn) = V � f�l>0Wlg
which is clearly shift invariant. Given q �Zn and l > 0 there exist unique k; p �Zn with
p = (p1; p2; : : : ; pn) satisfying 0 6 pj 6 2l� 1; j = 1; 2; : : : ; n; such that q = 2lk+ p. There
exist precisely 2nl such p and each of these lattice points determines the orthonormal system

f lq (x)g = f2nl=2  (2l(x� k)� p)g; k �Zn;
which is generated by the lattice point translations of the function 'lp(x) = 2nl=2  (2lx� p).
That is, each space Wl; l > 0, which is shift invariant, has the special (3.8) decomposition

(3.22) Wl = �p V'lp:

Putting together (3.20), (3.21) and (3.22), therefore, we have

L2(Rn) = f�1

j=1 V�jg � f�l>0f�p V'lpgg:
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Applying Lemma (3.11) we then must have

1X
j=1

jb�j(�)j2 + 1X
l=0

X
p

jb'lp (�)j2 =
�V (�) +

1X
l=0

X
p

j b lp (�)j2 6 1:

But b lp (�) = 2�nl=2 e�2� i2
�l � �p b (2�l�) and, thus,

jc lp(�)j = 2�nl=2 jb (2�l �)j

Consequently, the sum
P

p jb lp (�)j2 consists of 2nl equal terms and, thus, must be equal to

jb (2�l �)j2. We conclude that

1 > �V (�) +
1X
l=0

X
p

jb lp (�)j2 = �V (�) +
1X
l=0

jb (2�l �)j2:
Because of (C), therefore, �V (�) 6 1�

P
1

l=0 jb (2�l �)j2 =P1

l=1 jb (2l �)j2. Hence,

Z
Rn

�V (�)d � 6

Z
Rn

1X
l=1

jb (2l �)j2 d � =  1X
l=1

2�nl

!
jj jj22 =

1

2n � 1
<1:

This shows that �V is integrable and Theorem (3.2) is established.
Before ending this section let us make some observations. We introduced the charac-

terization of systems 	 = f 1; : : : ;  Lg that generate tight frames in the discussion fol-
lowing Proposition IV. Theorem (3.2) was stated and proved for the case L=1. As we
stated before, we did this for simplicity. If we assume the orthonormality of the system
f ljkg; l = 1; : : : ; L; 1 6 j; k �Zn; it is easy to see that our proof goes through when equality
(C) is satisfied. It is a curious fact that if we assume that the functions  l have norm at least 1
then (C) and (D) are equivalent to the property that the system f ljkg is an orthonormal basis
for L2. We need not assume that the L functions  l; l = 1; : : : ; L; are mutually orthogonal.
This orthogonality is a consequence of (C) and (D).

One can extend Theorem (3.2) to tight frames that are semiorthogonal (that is the sub-
spaces Wj are mutually orthogonal and the system f ljkg is a tight frame for the subspace it
generates).

The characterization of shift invariant subspaces, at least in the case of finitely many
subspaces V�, was introduced in [RS]. The general case was also obtained by M. Bownik [B2]
using a different approach.
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4. Multiresolution Analyses in Rn

A multiresolution analysis (MRA) is a sequence of subspaces fVjg; j�Z; of L2(Rn) sat-
isfying the following conditions

(4.1) Vj � Vj+1; j �Z;

(4.2) f � Vj if and only if f(2�) � Vj+1; j �Z;

(4.3) [j �ZVj = L2(Rn);

(4.4) there exists ' � V0 such that f'(� � k)g; k �Zn
is an orthonormal basis for V0.

The function ' in (4.4) is called a scaling function for this MRA.
It is not hard to show that (4.1), (4.2) and (4.4) imply

(4.5) \j �ZVj = f0g:
The proof of the one-dimensional version of this implication can be found on page 45 of
[HW]. The argument given there is very similar to the one we presented in Lemma (3.13). In
fact, we adapted the argument in [HW] to provide the proof of (3.13).

The construction of a wavelet basis from an MRA can be described in the following way:
For each j �Z let Wj = Vj+1 \ V ?

j . A consequence of the above hypotheses is that these
spaces are mutually orthogonal with

(4.6) Vj �Wj = Vj+1; j �Z;

and

(4.7) L2(Rn) = �j �ZWj:

If we can find a system 	 = f 1;  2; : : : ;  Lg � W0 such that

f l(� � k)g; l = 1; 2; : : : ; L; k �Zn

is an orthonormal basis for W0; then (4.2), (4.6) and (4.7) imply that

f ljkg; l = 1; 2; : : : ; L; j �Z; k �Zn;

is an orthonormal basis for L2(Rn). That is, 	 generates a wavelet basis for L2(Rn).
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It is convenient to express these properties in terms of the Fourier transform. By doing so
we shall see that the construction of appropriate systems 	 raises some interesting problems
and, in particular, we will discover that L must equal 2n � 1. It is clear that

bV0 = ff̂ : f � V0g = ff̂(�) = m(�)b'(�) : m�L2(Tn)g
(where m is 1-periodic and its Fourier coefficients are the coefficients in the expansion f =P

k �Zn �k '(� � k), that is provided by property (4.4)).
The elements of bV0, by (4.2), also provide us with those of bV�1 and cW�1. In each case

they are of the form b�(2 �) with � � V0; moreover, we must have

(4.8) b�(2 �) = m(�)b'(�)
and, since ' satisfies (A),

2�njjb�jj2L2(Rn) =

Z
Rn

jm(�)j2 jb'(�)j2d � = Z
Tn

jm(�)j2
X
k �Zn

jb'(� + k)j2 d �

=

Z
Tn

jm(�)j2 d �:

By polarization, therefore,

(4.9) 2�nhb�; b'iL2(Rn) = ht; siL2(Tn)
whenever b�(2 �) = t(�)b'(�) and b (2 �) = s(�)b'(�) are representations of �;  �V0 via equal-
ity (4.8). We shall examine some consequences of (4.8) and (4.9) when � = ' and  �W0 is
such that the system f (� � k)g; k �Zn, is orthonormal. It will be useful to consider the set
of vertices of Tn:

#n = f" = ("1; "2; � � � ; "n) : "j = 0 or 1; 1 6 j 6 ng:
By (4.8) we have b'(2 �) = m0(�)b'(�) and since ' satisfies equality (A) (because the trans-
lates by k �Zn of ' form an orthonormal system) we have

1 =
X
k �Zn

jb'(2 � + k)j2 =
X
k �Z

jm0(� +
1

2
k)j2 jb'(� + 1

2
k)j2

=
X
" � #n

jm0(� +
1

2
")j2

X
l �Zn

jb'(� + "

2
+ l)j2 =

X
" � #n

jm0(� +
1

2
")j2:

We have used the 1-periodicity on m0 and the fact that to each k �Zn there exists a unique
l �Zn and " � #n such that (1=2)k = l + (1=2)". This shows that the 2n-dimensional vector
with components m0(� + (1=2)") has norm 1 (for a.e. � �Rn):
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(4.10) 1 =
X
" � #n

jm0(� +
1

2
")j2:

Since we are assuming  �W0 also satisfies (A) this shows that the “filter” m defined by the
equality b (2 �) = m(�)b'(�) also satisfies (4.10). 2

We are also assuming that ' and  (� � k) are orthogonal for all k �Zn. Hence,

0 =

Z
Rn

b'(�)b (�)e2� ik�� d � = Z
Tn

(X
l �Zn

b'(� + l) b (� + l)

)
e2� ik�� d �:

That is, all Fourier coefficients of the 1-periodic function
P

l �Zn b'(�+ l) b (� + l) are 0. Thus
for a.e. � �Rn

(4.11) 0 =
X
k �Zn

b'(� + k) b (� + k):

Consequently,

0 =
X
k �Zn

b'(2 � + k) b (2 � + k) =

X
k �Zn

m0(� +
1

2
k)m(� +

1

2
k) jb'(� + 1

2
k)j2 =

X
" � #n

m0(� +
1

2
")m(� +

1

2
")
X
l �Zn

jb'(� + 1

2
"+ l)j2 =

X
" � #n

m0(� +
1

2
")m(� +

1

2
"):

This shows that the 2n-dimensional vectors fm0(� +
1
2
")g and fm(� + 1

2
")g; " � #n, are

orthogonal to each other:

(4.12) 0 =
X
" � #n

m0(� +
1

2
")m(� +

1

2
"):

In fact, these properties characterize the “wavelets”  �W0 :  �W0 is such that the system
f (� � k)g; k �Zn, is orthonormal if and only if the vector fm(� + 1

2
")g; " � #n, has norm 1,

2In general, f � V0 iff f̂(�) = t(�)b'(�) with t 1-periodic and in L2(Tn). We shall call t the filter associated
with f . It is unique.
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as in (4.10), and satisfies (4.12) (just reverse the order of the sequence in the equalities that
established (4.10) and (4.12)).

Let us use the notation  0 = ' and  1 =  (for a  �W0 having the properties we just
discussed). Suppose we find  l; l = 2; 3; : : : ; L, in W0 with filters ml (that is, b l(2 �) =
ml(�)b'(�)� L2(Tn); ml 1-periodic) such that

(4.13)
X
" � #n

ml1(� +
1

2
")ml2(� +

1

2
") = Æl1l2

a.e., then the collection 	 = f 1;  2; : : :  Lg generates the orthonormal system f lj;kg; l =
1; 2; : : : ; L; j �Z; k �Zn. It is clear thatL cannot exceed 2n�1 since the (L+1)�2n matrix has
row vectors fml(�+

1
2
")g; " � #n; 0 6 l 6 L, that satisfy (4.13); that is, the L+1 row vectors

form an orthonormal system for a.e. � (as the last calculation in this section shows, we must
have L = 2n � 1). Consequently, we are presented with the following question: given the
MRA fVjg; j �Z, with the scaling function', how do we find 2n�1 filtersml(�) such that the
2n�2n matrixM(�) having rows fml(�+

1
2
"g; " � #n, is unitary for a.e. �? It is clear from our

discussion that once this is achieved, then the collection 	 = f 1;  2; : : : ;  2n�1g generates
a wavelet basis for L2(Rn). In this connection let us make the following observation. Since
M(�) is unitary a.e., its “first column”;2664

m0(�)
m1(�)
: : :

m2n�1(�)

3775
is a vector of norm 1:

2n�1X
l=0

ml(�)ml(�) = 1:

Thus,
P2n�1

l=0 ml(�) b l(2 �) =P2n�1

l=0 jml(�)j2 b'(�) = b'(�). This shows that

' " spanf l
�1;k : l = 0; 1; 2; : : : ; 2n � 1; k �Zng � V�1 � W�1:

Since this last space equals V0 which is shift invariant and is spanned by f'(� � k)g; k �Zn,
it follows that the span of the functions  l

�1;k; 1 6 l 6 2n� 1, just considered, must be W�1.
We can conclude, therefore, that 	 generates a wavelet basis.

It is natural to consider the problem of finding the filtersml; 1 6 l 6 2n�1, given the filter
m0 associated with the scaling function m0. We begin by looking for a filter m1(�) such that
the vector fm1(� +

1
2
")g; " � #n, has norm one and is orthogonal to fm0(� +

1
2
")g; " � #n,

for a.e. �. This can be done in several ways. Here is a simple construction: Let 1 =
(1; 1; : : : ; 1)�Rn and "0 = (1; 0; : : : ; 0; 0)�Rn . If we define m1(�) = ei ��1m0(� +

"0
2
), then
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the two vectors Ml(�) = fml(� +
1
2
")g; " � #n; l = 0; 1 are orthogonal to each other and of

unit length a.e.. This provides us with one of the desired wavelet basis generators  1 if we
define it by the equality b 1(2�) = m1(�)b'(�). The search for  2; : : : ;  2n�1 is more involved.
Perhaps a few observations in the case n = 2 provide us with an insight into this situation. If
m0 is real-valued letM0(�) = (m0(�1; �2); m0(�1; �2+

1
2
); m0(�1+

1
2
; �2); m0(�1+

1
2
; �2+

1
2
)),

and define the row vectors

Ml(�) =M0(�)Ll;

l = 1; 2; 3; where

L1 =

0BB@
0 0 1 0
0 0 0 �1

�1 0 0 0
0 1 0 0

1CCA ; L2 =

0BB@
0 �1 0 0
1 0 0 0
0 0 0 �1
0 0 1 0

1CCA ; L3 =

0BB@
0 0 0 �1
0 0 �1 0
0 1 0 0
1 0 0 0

1CCA :

These provide us with the unitary matrix

U(�) =

2664
M0(�)
M1(�)
M2(�)
M3(�)

3775 =

2664
m0(�) : : : m0(� +

1
2
(1; 1))

m1(�) : : : m1(� +
1
2
(1; 1))

m2(�) : : : m2(� +
1
2
(1; 1))

m3(�) : : : m3(� +
1
2
(1; 1))

3775
such that the first column gives us the filters determining the collection 	 = f 1;  2;  3g
that generates a wavelet basis associated with the MRA we are considering: b l(2 �) =
ml(�)b'(�); l = 0; 1; 2; 3. If the components of M0(�) are complex-valued let

(s0(�)m0(�); s1(�)m0(� +
1

2
(0; 1));

s2(�)m0(� +
1

2
(1; 0)); s3(�)m0(� +

1

2
(1; 1; )))

= (jm0(�)j; jm0(� +
1

2
(0; 1))j; jm0(� +

1

2
(1; 0))j; jm0(� +

1

2
(1; 1))j)

and

S(�) =

2664
s0(�) 0 0 0

0 s1(�) 0 0
0 0 s2(�) 0
0 0 0 s3(�)

3775 ;
where each sl(�) is unimodular, l = 0; 1; 2; 3. S(�) is, then, a unitary matrix and, letting

(4.14) Ml(�) =M0(�)S(�)LlS
�(�);
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l = 0; 1; 2; 3; we, again, obtain the desired filters by selecting the first components of these
vectors. The matrices I; L1; L2; L3 can be considered to represent the generators 1; i; j; k of
the quaternions (observe that L2

l = �I; l = 1; 2; 3; L1L2 = L3; L2L3 = 1 and L3L1 = L2).
We can try to extend the idea of this construction by using the Cayley numbers and, for higher
dimensions, the Clifford algebras. One encounters, however, some difficulties by following
this path. Even in the two-dimensional case, the vectors defined by (4.14) may lack desired
smoothness due to the discontinuities of the signum functions. Thus, even if the scaling
function is compactly supported and has other desirable properties, we cannot expect the
wavelets so obtained to be compactly supported.

One can obtain compactly supported complex-valued wavelets from an MRA in R2 , how-
ever, by taking tensor products of 1-dimensional MRA’s. The general case can be easily
understood once we present the following two-dimensional case. Let � be a scaling func-
tion in L2(R) that is compactly supported with an accompanying low pass filter s such
that the wavelet � satisfying b�(2 �) = e2� i �s(�) b�(�) is compactly supported (see chapter
2 of [HW] where the Daubechies wavelets are constructed; s(�) in this case is a trigono-
metric polynomial). Then '(x; y) = �(x)�(y) is a scaling function for an MRA in L2(Rn)

and the polynomials m0(�) = m0(�1, �2) = s(�1)s(�2), m1(�) = s(�1)e
2� i �2s(�2 +

1
2
),

m2(�) = e2� i �1 s(�1 +
1
2
)s(�2), m3(�) = e2� i(�1+�2) s(�1 +

1
2
) s(�2 +

1
2
) will then provide

us a unitary matrix U(�), as in equality (4.14), from which we obtain the system of com-
pactly supported wavelets 	(x; y) = f 1(x; y);  2(x; y);  3(x; y)g satisfying b l(2 �) =
ml(�)b'(�); l = 1; 2; 3. It is clear that this construction extends to n-dimensions and it gives
us a compactly supported scaling function '(x) = '(x1; : : : ; xn) that will produce a sys-
tem 	(x) = f 1(x); : : : ;  2n�1(x)g of compactly supported wavelets; furthermore, the 1-
dimensional scaling functions whose product is ' can be different scaling functions of the
variables x1; x2; : : : ; xn.

Wavelets such as the ones we just described, as well as more general tensor products
obtained by partitioning the variables x1; x2; : : : ; xn into m subsets, are sometimes called
separable. Construction of wavelets having smooth filters is challenging even in the separable
case, if we require that they not be tensor products of one dimensional functions (see [A] for
an elegant, but not simple, such construction).

There exist wavelet bases for L2(Rn) that are generated by single functions. They can be
constructed directly by using the basic equations (A), (B), (C), and (D) (see [SoW]) or their
existence can be established by employing operator theoretic methods (see [DL]). Clearly,
these cannot be MRA wavelets. The wavelets obtained in [SoW] are MSF wavelets; that is,
the absolute value of their Fourier transforms are characteristic functions of a set W � R

n , a
wavelet set. Such sets are “fractal” and enjoy various interesting properties that are described
in [SoW].

It is natural to ask if there is a characterization of MRA wavelets. The answer is that
there exists a simply stated condition that determines whether a function (or a collection of
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functions) is a wavelet obtained from an MRA. Let us first consider the one dimensional case
and suppose  is an MRA wavelet; that is, b (2 �) = m1(�)b'(�); b'(2 �) = m0(�)b'(�) and
m0; m1 are 1-periodic functions satisfying, in particular,

jm0(�)j2 + jm1(�)j2 = 1;

for a.e. � (this follows from the 1-dimensional versions of the fact that M(�) is unitary).
Consequently,

j b (2�)j2 + jb'(2�)j2 = fjm(�)j2 + jm0(�)j2gjb'(�)j2 = 1 � jb'(�)j2
a.e. Iterating this argument we obtain

jb'(�)j2 = jb'(2N �)j2 + NX
j=1

j b (2j �)j2
a.e. for each positive integer N . It is clear that the limits

lim
N!1

NX
j=1

jb (2j �)j2 and lim
N!1

jb'(2N �)j2
exist (observe that these sums are bounded and increasing) and the integrability of jb'j2, to-
gether with Fatou’s lemma, imply that the last limit is 0 a.e.. Thus,

(4.15) jb'(�)j2 = 1X
j=1

jb (2j �)j2 a.e.

Since f'(� � k) : k �Zg is an orthonormal system, we have, by Proposition I,

(4.16) D (�) �
1X
j=1

X
k �Z

jb (2j(� + k))j2 = 1

a.e.. The 1-periodic function D (clearly integrable on [0; 1) whenever  �L2(R)) is known
as the dimension function. Equality (4.16) characterizes the 1-dimensional MRA wavelets:

Theorem. Suppose  �L1(R) is a wavelet. Then  is an MRA wavelet if and only if D (�) =
1 a.e..

See chapter seven of [HW] for a discussion and appropriate credits for this result.
The dimension function D can be defined by equality (4.16) for any  �L2(Rn) (the

only change is that k now ranges throughout Zn). Essentially the same argument we have
just given shows that if

	 = f 1;  2; : : :  Lg; L = 2n � 1
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is an MRA wavelet system, then

(4.17) D	(�) =
LX
l=1

1X
j=1

X
k �Zn

jb l(2j(� + k))j2 = 1

a.e.. We also observe that this equality can only hold if L = 2n � 1. Indeed, if (4.17) is true,
then

1 =

Z
Tn

D	(�)d � =
LX
l=1

1X
j=1

X
k �Zn

Z
Tn

jb (2j(� + k))j2d �

=
LX
l=1

1X
j=1

Z
Rn

jb (2j �)j2d � = LX
l=1

1X
j=1

2�jnjj ljj22 = L

�
1

2n � 1

�
:

5. The connectivity of wavelets.

Let us return to the “classical” 1-dimensional wavelets. We shall discuss the connectivity
of this class. We begin by showing that the set of MRA wavelets is an arcwise connected set:

THEOREM (5.1). If  0 and  1 are two MRA wavelets, then there exists a continuous map
A : [0; 1] �! L2(R) such that A(0) =  0; A(1) =  1 and A(t) is an MRA wavelet for all
t � [0; 1].

This result is due to Xingde Dai and Rufeng Liang . Their proof is presented in [Wu] (they
are members of the Wutam Consortium). We shall present the basic ideas of their argument.
In order to do so we will use some of the notions introduced in [Wu]. We begin by introducing
three “multipliers” that play important roles in the theory of wavelets:

Definition. A measurable function � on R is a wavelet multiplier if and only if (� b )_ is
an o.n. wavelet whenever  is an o.n. wavelet. � is a scaling function multiplier if and only
if (� b')_ is a scaling function whenever ' is a scaling function. A measurable function � is a
low pass filter multiplier if and only if �m is a low pass filter whenever m is a low pass filter.

If (� b )_ is an MRA wavelet whenever  is an MRA wavelet we say that � is an MRA
wavelet multiplier.

These multipliers have been completely characterized in [Wu]:

THEOREM (5.2). � is a wavelet, MRA wavelet or scaling function multiplier if and only
if it is unimodular and �(2 �)=�(�) is a.e.equal to a 1-periodic function. � is a low pass filter
multiplier if and only if it is a unimodular function that is equal a.e. to a 1-periodic function.

(The term “unimodular function” means that the function in question has absolute value 1
a.e.).



358 G. Weiss and E.N. Wilson / The Mathematical Theory of Wavelets

A few observations are in order. If  0 is an MRA wavelet then the other wavelets be-
longing to the same MRA are precisely those functions  such that b = � b 0 where � is
unimodular and a.e. equal to a 1-periodic function. If � is a wavelet multiplier,  = (� b 0)_
may very well belong to a different MRA (by the last theorem in section 4 and Theorem (5.2),
however, we do know that such a  is an MRA wavelet). We shall be interested in the classes

W 0 = fall wavelets  : j b (�)j = jb 0(�)j a.e.g
whenever  0 is a wavelet. It follows from the above observations that if  0 is an MRA wavelet
then each  �W 0 is an MRA wavelet and W 0 contains all the wavelets generated by the
MRA that produced  0. Furthermore, if  = (� b 0)_, where � is a wavelet multiplier, then
 �W 0 . Thus, if, for a wavelet  0, we let

M 0 = f = (� b 0)_ : � a wavelet multiplierg;
then

(5.3) M 0 � W 0

We shall consider a third class of wavelets generated by an MRA wavelet  0. In order to
introduce this class it is helpful to use the following characterization of the scaling functions
(see chapter 7 of [HW]):

THEOREM (5.4). A function ' �L2(R) is a scaling function for an MRA if and only if

1.
X
k �Z

jb'(� + k)j2 = 1 a.e.;

2. lim
j!1

jb'(2�j �)j = 1 a.e.;

3. there exists a 1-periodic m�L2([�1=2; 1=2)) such thatb'(2 �) = m(�)b'(�):
An immediate consequence of this theorem is that jb'j is the Fourier transform of a scaling

function whenever ' is a scaling function. The function m is, of course, the low pass filter
associated with the scaling function ' via the equality in 3 of Theorem (5.4); furthemore, m
is uniquely determined by ' and satisfies the Smith-Barnwell equality

(5.5) jm(�)j2 + jm(� +
1

2
)j2 = 1

for a.e. �. The most general wavelet belonging to the MRA generated by ' satisfies

(5.6) b (2 �) = e2 � i � s(2 �)m(� +
1

2
)b'(�)
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where s is a unimodular 1-periodic function. An immediate consequence of (5.5) and (5.6)
is that if '1 and '2 are two scaling functions such that jb'1(�)j = jb'2(�)j a.e. and  1;  2 are
MRA wavelets associated with '1 and '2, then j b 1(�)j = j b 2(�)j a.e. It follows that the class
S 0 of all MRA wavelets associated with a scaling function ' satisfying jb'(�)j = jb'0(�)j
a.e. ( 0 being an MRA wavelet associated with '0) is a subset of W 0 . On the other hand,
equality (4.15) shows that W 0 � S 0 Thus,

(5.7) W 0 = S 0
whenever  0 is an MRA wavelet. In fact we have

THEOREM (5.8). If  is an MRA wavelet, then

M =W = S :
This result is proved in [Wu].
The setsM andW can be defined for any wavelet  , not necessarily MRA. In view of

Theorem (5.8), it is natural to ask if the equality M = W is true for all wavelets  . The
answer is “No;” Q. Gu constructed a clever counterexample.

Let us describe the two basic ideas of the proof of this theorem. First one shows that
each of the classes W ;  an MRA wavelet, is connected. Second, one shows that each
MRA wavelet  1 can be connected to the Shannon wavelet  0. As we shall see, this part of
the argument is facilitated by the fact that we can choose  1, by Theorem (5.8), so that its
associated scaling function '1 satisfies b'1(�) > 0 a.e. (since W 1 = S 1 this clearly can be
done).

For the first part of this proof, which establishes that W is connected, one chooses
 1 �W = M (by Theorem (5.8)) so that b 1 = � b for an appropriate wavelet multi-
plier. Since � is unimodular (Theorem (5.2)) we can write �(�) = ei �(�); �(�), however, is
not unique, but it is easy to construct an appropriate � so that �t(�) = eit �(�) is a wave-
let multiplier (�t(2 �)�t(�) is 1-periodic) for t � [0; 1]. We then obtain a continuous map
� : t �!  t � (�t b )_ on [0; 1] such that for t = 0 we have �(0) =  0 =  and, for
t = 1, we have �(1) =  1.

The second part of the proof is somewhat more involved. We present the basic features of
the argument. As explained above, we can assume that we have a wavelet  1 constructed from
a scaling function'1 such that b'1(�) > 0 a.e.. It suffices to connect  1 to the Shannon wavelet
 0 whose scaling function '0 satisfies b'0(�) = �[� 1

2
; 1
2
](�). It follows that the corresponding

filters, m0 and m1, are non-negative. It is tempting to define

(5.9) mt(�) =
p
(1� t)m0(�)2 + tm1(�)2
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for t � [0; 1] (observe that the Smith-Barnwell equality,mt(�)
2+mt(�+

1
2
)2 = 1 is true). This

provides us with a continuous path of low pass filters. The corresponding scaling functions
satisfying

b't(�) = �1

j=1mt(2
�j �)

form a continuous path of scaling functions. The desired path of wavelets is, then, obtained
by letting

b t(2 �) = e2 � i �mt(� + �)b't(�)
for t � [0; 1]. This scheme “almost works”. The main modification needed is that the inter-
mediate filters be obtained by an equality that is technically more complicated than (5.9)
(see [Wu] page 588).

The consideration of the connectivity of wavelets is very natural. The “first wavelets”
(besides the Haar and Shannon wavelets), constructed in the early eighties by Lemarié and
Meyer, are, in a real sense, obtained by a continuous “smoothing” (on the Fourier trans-
form side) of the Shannon wavelet. A general result on connectivity was obtained in [BDW].
The authors in this work concerned themselves with wavelets produced by very smooth fil-
ters. The paths obtained were continuous with respect to a topology that is considerably
stronger than that produced by the L2(R)-norm. There is a topological impediment that
prevents one from connecting two wavelets in general when this stronger topology is used.
For example, if  0 is the Haar wavelet and  1(x) =  0(x � 1) is its translate by 1, thenb 1(�) = s(�)b 0(�) = e�i � b 0(�). The fact that the function that is identically 1 and s(�) are
not in the same homotopy class prevents the existence of a path joining these two wavelets
that is continuous in the topology used in [BDW]. These questions, as well as extensions of
the results in this last work, are discussed by G. Garrigós in [Ga].

An interesting connectivity result was obtained by D. Speegle [SP] who showed that the
collection of MSF wavelets is connected. Let us say a few words to put this result in some
perspective. One of the first examples of a wavelet that is not an MRA wavelet was obtained
by J-L Journée. His wavelet is an MSF wavelet (see [HW], page 64). It follows that the
union of the MRA and MSF wavelets is an arcwise connected subset of the surface of the
unit sphere in L2(R). Auscher [A] and Lemarié [Le] have, independently, shown that if one
makes rather mild assumptions about the Fourier transform of a wavelet (continuity and a
decrease at 1), the wavelet arises from an MRA. We see therefore, that “most” wavelets
are either MRA or MSF wavelets. It is not unreasonable to conjecture, therefore, that the
collection of all wavelets in L2(R) is connected. The answer to this conjecture, however, is
not yet known.

If we consider the question of connectivity and, more generally, multipliers, in connection
with higher dimensional wavelets produced by more general dilations we find various factors
that alter the form of the results we seek. We have seen, for example, that the MRA wavelets
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in higher dimensions require more than one generator. This, however, depends on the dilation
that is used. This is not the case for those wavelets on R2 obtained by the translations by the
points of the lattice Z2 � R

2 and the dilations obtained from the integral powers of the matrix

M =

�
1 �1
1 1

�
�

That is, if  �L2(R2), the system f jkg; j �Z; k �Z2 is defined by

(5.10)  jk(x) = (detM)j=2  (M jx� k) = 2j=2  (M jx� k)

for x �R2 (M jx denoting the vector obtained by multplying the matrix M j by the column
vector

x =

�
x1
x2

�
�R2)

A function  such that f jkg; j �Z; k �Z2, is an orthonormal basis for L2(R2) is called a
Quincunx wavelet. There exist MRA wavelets,  , of this type producing orthonormal bases
of the form f jkg, just as in the one-dimensional case. That is, even though the dimension of
the underlying space, R2 , is 2, we do not need 3 (= 22 � 1) generators to obtain a “wavelet
basis” for L2(R2) as is the case described in section 4.

The quincunx wavelets share many other properties with the “classical” wavelets on R
obtained by integral translations and dyadic dilations. In particular, the Wutam program, for
the quincunx wavelets, is just like the one we just presented.

Let  �L2(R2) and f jkg be the system defined by equality (5.10). Then, letting M1 be
the transpose of M , we have

(5.11) b jk(�) = 2�j=2 b (M�j
1 �)e�2� ik�M

�j
1

�

for � �R2 ; j �R and k �Z2. Until further notice, we shall use the term “wavelet” for an or-
thonormal quincunx wavelet (that is, a function  �L2(R2) such that the system defined by
(5.10) is an o.n. basis for L2(R2)). The characterization of wavelets obtained by general
dilations, Theorem (2.3), reduced to the situation we are now studying, becomes

PROPOSITION (5.12).. Let  �L2(R2) such that jj jj2 > 1. Then  is an o.n. wavelet if
and only if

(I)
X
j �Z

jb (M j
1 �)j2 = 1 for a.e. � �R2 ;

(II)
X
j>0

b (M j
1 �)

b (M j
1 (� + q)) = 0 for a.e. � �R2



362 G. Weiss and E.N. Wilson / The Mathematical Theory of Wavelets

whenever q =

�
q1
q2

�
�Z2 with q1; q2 having different parity.

Let T = T
2 = f� = (�1; �2) : �1

2
6 �j <

1
2
; j = 1; 2g and

S = (MT)nT

(M T is the square with vertices (0,1), (-1,0), (0,-1) and (1,0)). Letting  be defined by
having b (�) = Xs(�), it is easy to check that  is an orthonormal wavelet that is also an
MRA wavelet. A scaling function  for the MRA is obtained by letting b'(�) = XT(�) and
its associated low pass filter m is the characteristic function of X �1

M T, restricted to T, and
then extended to be 1-periodic in each variable. In fact, this provides us with an example of
an MRA, MSF wavelet in the quincunx case (the analogue of the Shannon wavelet).

The notion of multiplier (wavelet, scaling function or filter multiplier) as well as the
definition of the sets W ,M and S extends in an obvious way, and so does Theorem (5.8).
In fact, it is not hard to obtain the version of Theorem (5.1) that asserts that the MRA quincunx
wavelets are path-connected. The details of this “Wutam program” adapted to this situation
were presented in a Ph.D. qualifying oral exam by one of our students, L. Zhang.

6. Summary and Bibliographical comments.

As we stated at the beginning, one of our motivations was to present the “Mathematical
Theory of Wavelets.” Obviously, we cannot do this in any exhaustive way in this rather short
article. Our aim was to describe some of the beauty of this theory and, if possible, elaborate
topics that are new. We hope that this write-up does have some of these properties.

We have not considered many important uses of wavelet theory in mathematics. For ex-
ample, their application to the construction and deriving properties of a large collection of
important function spaces (the Besov and Triebel-Lizorkim spaces) is not a topic we dis-
cussed. Chapters 5 and 6 in [HW] and [FJW] deal with this topic.

We described various kinds of wavelets, scaling functions, filters and we gave character-
izations of almost all these function with the exception of low pass filters. One of us was
involved in the characterizations of all low pass filters in 1-dimension and for dyadic dila-
tions [PSW]. The characterization of the dual systems (�;	) announced by Theorem (2.3)
really pertains to the case where the dilation matrix A has integer entries and the translations
are obtained from the latticeZn (in terms of the notation used in section 2, the matrixP �1AP
must have integer entries and this similarity reduces the problem to the lattice Zn). There are,
however, wavelet systems that involve more general dilations and translations; in [CCMW]
the problem of the characterization of such systems is solved.

Though we concentrated our attention to wavelets, we indicated that other systems, ob-
tained by applying, say, modulations and translations to a fixed function, are also of interest.
For example, systems of the form
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(6.1) gmn(x) = e2 � imxg(x� n);

m; n �Z, the Gabor systems, have been studied extensively. A very general context that
produces the “continuous” versions of such systems (as well as the continuous wavelets) can
be described by the collection of (n+ 2)� (n+ 2) matrices of the form

(6.2) g =

0@ 1 b z
0 A c
0 0 1

1A ;

where b is an n-dimensional row vector, c an n-dimensional column vector, A �GL(n;R) and
z �R. If we let the matrix (6.2) act on the column vector (on the right)0@ u

v
y

1A ;

where u; y �R and v �Rn , we obtain the action0@ u
v
y

1A �!

0@ u+ b � v + zy
Av + cy

y

1A
This induces the following mapping

(Tg  )(u; v; y) = j detAj� 1

2 e2� i(u+b�v+zy) (Av + cy)

defined on a function  (v); v �Rn . If u = 0; b = 0 and y = 1, we obtain the map (2.1)
(strictly speaking, we should use g�1 instead of g; the variable z is not important and its
main function is to make sure that the matrices (6.2) form a group). If A = I; y = 1; u = 0
we obtain the “continuous Gabor system,” which is also referred to as the Weyl-Heisenberg
transform. It is natural to consider the various themes treated in the previous questions in this
general setting. For example, we can try to find admissibility conditions, such as Theorem
(2.1), when A belongs to a subgroup of GL(n;R) and b; c �Rn . In the Weyl-Heisenberg case
this is considered in [LP]; see, also, the discussion in [DGM] that is relevant to this case. The
authors of [LWWW] are engaged in an investigation of these problems in the general case.
Particularly challenging is the question of the discretizations of the continuous transforms.
The Gabor system

 mn(x) = e2� imb�x (x+ nc)
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is a particular discretization of this type that is well known; various conditions guaranteeing
the orthonormality and frame properties of these functions have been considered by many
authors (see, in particular, [Cz]).

We have included some items in the bibliography that are not referred to directly. In
general these pertain to presentations of continuous wavelets and their discretizations that
should be compared with our presentation; there are, also, certain aspects of what we describe
here that are, formally, quite similar to work done in representations theory. We suggest that
the reader examine [BGZ], [BT], [Car], [DM], [GM], [GMP1], [GMP2], [GP], [K], [LP], [M],
and [ST] for the work done that is related to section 2.

One last word about the “characterization” equalities we talked about. Clearly it is a good
thing to find out descriptions of the class of all functions having certain properties (wavelets,
scaling functions, tight frame wavelets, low pass filters, etc.) We claimed, at the end of section
1, that the equalities we are considering have been very useful for many constructions. The
book [HW] presents many examples. We cite [BGRW] as another example that attracted
some attention.
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